Theoretical Study of Oldroyd-B Visco-Elastic Fluid Flow Through Curved Pipes with Slip Effects in Polymer Flow Processing
نویسندگان
چکیده
منابع مشابه
Transient Electro-osmotic Slip Flow of an Oldroyd-B Fluid with Time-fractional Caputo-Fabrizio Derivative
In this article, the electro-osmotic flow of Oldroyd-B fluid in a circular micro-channel with slip boundary condition is considered. The corresponding fractional system is represented by using a newly defined time-fractional Caputo-Fabrizio derivative without singular kernel. Closed form solutions for the velocity field are acquired by means of Laplace and finite Hankel transforms. Additionally...
متن کاملA NOTE ON THE UNSTEADY FLOW OF A VISCO-ELASTIC MAXWELL FLUID THROUGH A RECTILINEAR PIPE
The unsteady flow of a visco-elastic Maxwell fluid through a rectilinear pipe having its cross-section as a parallelogram under the influence of a axial pressure gradient (I) varying linearly with time , and (II) decreasing exponentially with time has been discussed in the present paper. Variables separable and Laplace transform methods have been used to solve the problem.
متن کاملNumerical approximation of viscoelastic Oldroyd-B flows in curved pipes
The aim of this paper is to study a finite element numerical approximation of steady flows of an incompressible viscoelastic Oldroyd-B fluid in curved pipes of arbitrary cross-section and curvature ratio. Using rectangular toroidal coordinates, existence and uniqueness of approximated solutions are proved as well as a priori error estimates, under a natural restriction on the pipe curvature ratio.
متن کاملPrediction of turbulent flow in curved pipes
A finite-difference procedure is employed to predict the development of turbulent flow in curved pipes. The turbulence model used involves the solution of two differential equations, one for the kinetic energy of the turbulence and the other for its dissipation rate. The predicted total-velocity contours for the developing flow in a 180’ bend are compared with the experimental data. Predictions...
متن کاملSize-dependent Vibration and Instability of Magneto-electro-elastic Nano-scale Pipes Containing an Internal Flow with Slip Boundary Condition
Size-dependent vibrational and instability behavior of fluid-conveying magneto-electro-elastic (MEE) tubular nano-beam subjected to magneto-electric potential and thermal field has been analyzed in this study. Considering the fluid-conveying nanotube as an Euler-Bernoulli beam, fluid-structure interaction (FSI) equations are derived by using non-classical constitutive relations for MEE material...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Applied and Computational Mathematics
سال: 2018
ISSN: 2349-5103,2199-5796
DOI: 10.1007/s40819-018-0541-7